Managing complexity in engineering processes

Watson IoT

Amit Talwar
Watson IoT Solution Architect
October 1, 2018
Software is everywhere

its driving transformation in engineering
Engineers need a living, on-demand system to manage the complexity of product development.

Information cannot be static. It must be ready, available, accessible and actionable both inter and intra-enterprise.

<table>
<thead>
<tr>
<th>Managing versions/variants</th>
<th>Ensuring compliance</th>
<th>Model-based systems engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking of complex configuration management and managing strategic reuse of engineering assets</td>
<td>Determining compliance to functional safety, regulations and industry standards available at any time</td>
<td>Understanding the effects of changes to requirements and the ability to model interdependencies between sub-systems</td>
</tr>
</tbody>
</table>
Engineers need to trace and manage strategic reuse of assets in product variants and versioning across sub-assemblies

More customization leads to variants in products and sub-assemblies

More components, interfaces and software lead to configuration complexity

Traceable engineering tools
Open and effective integrations

1 engineering environment configuration
Engineering teams manage complexity bases on sophistication of development processes and software

Teams can reduce errors and increase productivity by managing versions and variants of software-intensive products and systems

- **Baseline**
 - Establish enduring reference points for requirements, designs, tests and implementations

- **Process-driven**
 - **Change Management**
 - Controlled development process in which changes require formal approvals with full audit trail
 - **Parallel Development**
 - Teams work on multiple cascading sprints or releases simultaneously

- **Software-driven**
 - **Product Variants**
 - Engineer products variants that have small differences among them
 - **Product Line Engineering**
 - Engineer as product line for high level of reuse in variants
• As engineering complexity rises, engineering regulatory standards are demanded from manufacturers

• New engineering regulations are being introduced for SW intensive products

• Regulations relate to engineering maturity and functional safety

• With today’s engineering complexity meeting compliance with ad-hoc practices is a major challenge

• Better engineering practices are needed

Meeting engineering compliance demands provide an opportunity to save costs and increase efficiency
Manufacturers are struggling to manage complexity amid increasing regulation.

Automotive

- Lines of code in new Ford F-150 Truck 10 speed transmission = 1 million, in 2003 this was 155 K
- QA and testing spend is predicted to increase to 40% of total IT budget by 2019

Aerospace and defense

- 5 generation F-35 functionality is 90% Software driven compared to F-16 which has 40% functionality driven by Software
- F-35 testing cost overrun $1 Billion caused by late identification of Software errors in prior versions of the software

Medical devices

- The da Vinci S surgical robotic system:
 - 1.4 million lines of code
 - Computing power of 7 laptops
 - 10,000 individual parts

...while the minimum viable product concept works in app development, this is a non-starter for complex safety related products.
Engineering compliance requirements

• Basically demonstrating repeatable and traceable engineering process
 • Details vary across industry

• Carry out systems engineering – not only HW and SW development

• Proper management of requirements, design, and test with complete traceability across

• Carrying out safety assessments and provisions for safety related standards

• Process measurement and improvement by maturity standards
Challenges with meeting engineering compliance

- Little or no visibility into the progression of development of the various engineering artifacts
- Manage traceability across multi-disciplinary engineering artifacts
- Clear specification of the engineering process and how the process relates to the generated artifacts
- Providing evidence for required activities (e.g., verification)
- Standardizing the process across the organization
- Recording artifacts changes and configurations
Complex products need to comply to standards to assure safety, demonstrate engineering maturity, and enable supply chains.

Best practices and services

- Architecture, design and development
- Visualize, analyze and organize
- Planning, change/configuration management
- Requirements
- Quality

Open lifecycle integration

Industry architectural Standards
- ECU Design/Dev via AUTOSAR
- Defense Architectures via DoDAF
- HW-SW Co-design

Compliance Standards: Functional Safety and Maturity
- ASPICE (Maturity)
- Automotive Safety via ISO 26262
- Aerospace Safety via DO-178B/ ARP $754
- Med Device Safety via IEC 62304
- FDA Design Control

Supported industries
- Automotive
- Aerspace and Defense
- Electronics
- Network service providers
- Rail
- Chemicals and petroleum
- Energy and utilities

...status of compliance to standards must be knowable at any time from any place
The migration to model-based systems engineering is an indispensable capability for delivering complex, interconnected systems.

Today’s system engineering is based on disparate and non-verifiable documents across multiple tools...

Documents are static with no way to understand how a change affects other components.

...model-based systems engineering maintains fully traceable and verified system specifications.
IBM CE platform provides the necessary means to facilitate compliance with today’s engineering standards.
IBM CE platform provides the necessary means to facilitate compliance with today’s engineering standards

Methods to manage product complexity can improve systems engineering processes

Agile software development can deliver innovation faster

Enable access to all engineering and related information through open standards

<table>
<thead>
<tr>
<th>Component</th>
<th>Design</th>
<th>Test</th>
<th>Implementation</th>
<th>Requirements</th>
<th>Analysis</th>
<th>Operations and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Design</td>
<td>Lean Software Engineering</td>
<td>Mechanical Design</td>
<td>Deploy or Release to Mfg</td>
<td>System Test</td>
<td>System V & V</td>
<td>Integration and Validation</td>
</tr>
<tr>
<td>Electrical / Electronics Design</td>
<td>Iterative</td>
<td></td>
<td>Decomposition and Definition</td>
<td>Customer Requirements</td>
<td>Market Analysis</td>
<td></td>
</tr>
</tbody>
</table>
How does the CE platform help with compliance

• Properly manage requirements, design, and test
• **Traceability** across all engineering which is essential to support the various compliance standards based on the OSLC open standard
• **Metrics and reporting** – Visualization of progress as to the completion of the various engineering activities and completion of artifacts for all project stakeholders
• **Configuration and Change management processes** – mandated by all safety and maturity standards
• Domain specific templates
 • Aiding users to develop engineering artifacts that comply to the standard
• Process enactment through integration with Stages
 • Standardizing task flows that detail how to develop specific engineering artifacts in specific tools
 • Standardizing processes across the organization
Partner Integration
Bringing you a cohesive ecosystem for continuous engineering

- Define, publish, Tailor process
- Enact process workflow into task management
- Prove compliance

Tap into our other integration partners
MethodPark-IBM Workflow

1. Define Processes
 - Design in Stages
 - Import from RMC, Excel, Visio, Word

2. Map Process Against Regulations
 - Process leader determines which items are critical – engineers relieved of this burden

3. Enact Process in RTC with real-time updates
 - Change Management
 - Safety Critical Work Items Created Automatically in RTC

4. Prove Compliance & Create Executive Dashboard
 - Audit trail
 - Execs can view progress RTC or Dashboards in Stages

Regulations:
- IEC 62304
- DO178B/C
- ISO 26262
- ...
Thank you